Multiple solutions for higher-order difference equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

POSITIVE PERIODIC SOLUTIONS FOR HIGHER-ORDER FUNCTIONAL q-DIFFERENCE EQUATIONS

In this paper, using the recently introduced concept of periodic functions in quantum calculus, we study the existence of positive periodic solutions of a certain higher-order functional q-difference equation. Just as for the well-known continuous and discrete versions, we use a fixed point theorem in a cone in order to establish the existence of a positive periodic solution. This paper is dedi...

متن کامل

Existence of Periodic Solutions for Higher-order Nonlinear Difference Equations

In this article, we study a higher-order nonlinear difference equation. By using critical point theory, we establish sufficient conditions for the existence of periodic solutions.

متن کامل

Positive periodic solutions for higher order functional difference equations

In this paper, we apply a fixed point theorem to obtain sufficient conditions for the existence of positive periodic solutions for two classes of higher-order functional difference equations. AMS subject classification: 39A10.

متن کامل

MULTIPLE NONNEGATIVE SOLUTIONS FOR BVPs OF FOURTH-ORDER DIFFERENCE EQUATIONS

First, existence criteria for at least three nonnegative solutions to the following boundary value problem of fourth-order difference equation Δ4x(t− 2) = a(t) f (x(t)), t ∈ [2,T], x(0)= x(T +2)=0, Δ2x(0)=Δ2x(T)=0 are established by using the well-known LeggettWilliams fixed point theorem, and then, for arbitrary positive integerm, existence results for at least 2m− 1 nonnegative solutions are ...

متن کامل

Oscillation of Higher-order Delay Difference Equations

where {pi(n)} are sequences of nonnegative real numbers and not identically equal to zero, and ki is positive integer, i = 1,2, . . . , and is the first-order forward difference operator, xn = xn+1− xn, and xn = l−1( xn) for l ≥ 2. By a solution of (1.1) or inequality (1.2), we mean a nontrival real sequence {xn} satisfying (1.1) or inequality (1.2) for n ≥ 0. A solution {xn} is said to be osci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 1999

ISSN: 0898-1221

DOI: 10.1016/s0898-1221(99)00112-1